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[1] We demonstrate an ensemble-based radiance
assimilation methodology for estimating snow depth and
snow grain size using ground-based passive microwave
(PM) radiance observations at 18.7 and 36.5 GHz. A land
surface model (LSM) was used to develop a prior estimate
of the snowpack states, and a radiative transfer model was
used to relate the modeled states to the observations within a
data assimilation scheme. Snow depth bias was �53.3 cm
prior to the assimilation, and �7.3 cm after the assimilation.
Snow depth estimated by a non-assimilation-based retrieval
algorithm using the same PM observations had a bias of
�18.3 cm. Our results suggest that assimilation of PM
radiance observations into LSMs shows promise for
snowpack characterization, with the potential for
improved results over products from instantaneous
(‘‘snapshot’’) retrieval algorithms or the assimilation of
those retrievals into LSMs. Citation: Durand, M., E. J. Kim,

and S. A. Margulis (2009), Radiance assimilation shows promise

for snowpack characterization, Geophys. Res. Lett., 36, L02503,

doi:10.1029/2008GL035214.

1. Introduction

[2] Snowmelt runoff dominates streamflow response for
many rivers; an estimated one-sixth of the global population
lives in such areas [Barrett et al., 2005]. Passive microwave
(PM) measurements of the earth system have been used to
characterize water resources stored as snow on a global basis
via retrieval algorithms (http://nsidc.org/data/ae_dysno.html)
for the past three decades [Chang et al., 1976], albeit with
relatively large footprints. Near-term prospects for improved
satellite spatial resolution are uncertain, but model-generated
snow products may offer an alternative—provided they are
appropriately constrained by observations. Data assimilation
of PM radiance observations (‘‘radiance assimilation’’, here-
after) provides a potential alternative for improving global
snowpack characterization. Instead of obtaining a snowwater
equivalent (SWE) estimate via retrieval algorithm (usually a
simple combination of several PM channels), or assimilating
retrieval products [e.g., Andreadis and Lettenmaier, 2006;
Dong et al., 2007] the PM radiance measurement is assim-
ilated into a land surface model (LSM). Radiance assimila-
tion has greatly improved the skill of numerical weather
models forecasting atmospheric temperature and moisture
profiles [Mathieu and O’Neill, 2008]. For snowpack charac-

terization, Durand and Margulis [2007] demonstrated in a
synthetic test that radiance assimilation could overcome the
errors and limitations associated with retrieval algorithms,
such as the 100 mm saturation threshold [Dong et al., 2007].
Our objective in this paper is to explore radiance assimilation
using real measurements, following on an earlier study of
radiative transfer model (RTM) sensitivity [Durand et al.,
2008]. We hypothesize that 1) radiance assimilation of the
vertical polarization (v-pol) 18.7 and 36.5 GHz channels will
result in accurate snow depth estimates; and 2) snow depth
estimate accuracy is conditional on grain size uncertainty
parameterization, as has been shown in synthetic tests
[Durand and Margulis, 2008].

2. Data, Models, and Methods

2.1. Data

[3] In this study, we use meteorological, snow pit, and
PM radiance measurements collected at the Local-Scale
Observation Site (LSOS) of the NASA Cold Land Processes
Experiment (CLPX; http://www.nohrsc.nws.gov/�cline/
clpx.html). The LSOS is a 1 hectare site located at
39�5402400N, 105�5205800W [Cline et al., 2002]. We used
LSOS meteorological, snowpit and radiance data from the
third of four Intensive Observational Periods (IOP-3) which
took place from 18 to 26 February 2003. Precipitation, air
temperature, incoming solar and longwave radiation, rela-
tive humidity, wind speed, and wind direction were also
measured [Graf et al., 2003]. Snow depth, density, temper-
ature, and grain size were measured in the LSOS snowpits
[Cline et al., 2002]; we use the two snow pits identified by
Durand et al. [2008] as being most representative of the
snow measured by the radiometer. Durand et al. [2008]
developed a method to estimate the RTM grain size input
(see section 2.2) from the CLPX grain size measurements
Dmax:

pex ¼
a0 þ a1 lnDmax v > 0:2 and Dmax > 0:125mm

p0 otherwise

�
ð1Þ

where pex is the grain size exponential correlation length
(‘‘grain size’’, hereafter) as defined by Mätzler [2002], a0
and a1 are empirical constants with values of 0.18 and 0.09,
respectively, the value of p0 is 0.05 mm, and v is the volume
fraction (snow density divided by the density of ice).
[4] The University of Tokyo’s GBMR-7 instrument [Graf

et al., 2003] provided radiance observations at 18.7, 36.5
and 89.0 GHz frequencies, and V and H polarizations.
Although in theory all of these channels contain information
about the snowpack, use of the horizontal polarization
channels is made difficult by the presence of ice layers in
the snowpack [Durand et al., 2008]. Moreover, the 89.0 GHz
channels are more sensitive to the surface properties of
the snow than to the snow depth [Durand et al., 2008]. Thus,
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in this study, we use the 18.7 and 36.5 GHz measurements
at v-pol.

2.2. Models

[5] The three-layer Snow–Atmosphere–Soil Transfer
(SAST) energy balance snow physics model is used [Sun et
al., 1999], embedded within the Simplified Simple Biosphere
(SSiB) [Xue et al., 1991] model. We chose this model for
continuity with our previous radiance assimilation studies
[Durand and Margulis, 2007, 2008]. Relevant state variables
include snow depth and ground temperature, as well as three-
layer snow density, snow temperature, and liquid water
content. Temperature state variables are predicted in SSiB
using the force-restore method [Dickinson, 1988], shown by
Luo et al. [2003] to lead to inaccurate snow-soil interface
temperature predictions. During IOP-3, soil temperature near
the snow-soil interface was nearly constant at the freezing
point. To focus on snowpack dynamics in this study, we
treated the snow-soil interface temperature as a known
boundary condition. We modeled precipitation uncertainty
by perturbing the measured value with temporally invariant,
multiplicative, log-normal error with a coefficient of varia-
tion of 0.5, which is consistent with Durand and Margulis
[2007].
[6] The grain size evolution model of Flanner and

Zender [2006] is used in this study; the model includes
the effects of both temperature gradient and snow grain
curvature on the evolution of the effective grain radius re.
The incremental growth of the grain radius dre is predicted
as a function of snow temperature, density, and temperature
gradient. We model the uncertainty in re predictions by
perturbing dre with temporally constant, multiplicative log-
normal forcing error, characterized by a coefficient of vari-
ation c. We chose a nominal value for c of 0.5 in order to
produce a reasonable ensemble spread in re; we investigate
the sensitivity of the assimilation scheme to c below. The
effective grain radius re can be related to the grain size pex as
defined in section 2.1 based on the physical relationships and
the empirical constant a2 described by Mätzler [2002]:

pex ¼
4

3
rea2 1� vð Þ ð2Þ

where the value of a2 is 0.75.
[7] The combination of SAST, SSiB and the grain size

evolution model is referred to as ‘‘the LSM’’ hereafter. The
LSM is represented by the functional A[], and is used to
prognose the vector of snowpack physical states y:

ytþ1 ¼ A yt ; ut ;a½ 	 ð3Þ

where u represents the meteorological forcing data, and a
represents the model parameters, which are treated as
uncertain through the precipitation and dre, respectively.
[8] The Microwave Emission Model for Layered Snow-

packs (MEMLS) RTM uses a combination of empirical
relationships and physical properties to characterize the
radiative properties of each snowpack layer [Wiesmann and
Mätzler, 1999]. The scattering and absorption coefficients are
calculated based on the improved Born approximation
[Mätzler and Wiesmann, 1999]. MEMLS is referred to as
‘‘the RTM’’ hereafter. The RTM is represented as the func-

tional B [], and is applied as described inDurand et al. [2008]
to predict the radiance observation, zpred:

zpred;t ¼ B yt;b½ 	 ð4Þ

where the vector b includes all other RTM inputs, such as
the sky brightness boundary conditions.

2.3. Radiance Assimilation Scheme

[9] A variety of data assimilation methods are available
[Reichle, 2008]. The assimilation method applied in this
study consists of an ensemble batch smoother [e.g., Dunne
and Entekhabi, 2005]. The ensemble approach is used here
because of the nonlinearity in the LSM and RTM and due to
the non-Gaussian nature of the uncertain inputs. A smoother
(batch estimator) is used to condition the estimated states
(snow depth and 3–layer grain size) at any time in the
estimation window on all the radiance observations taken
during the IOP-3 window. The LSM (equation (3)) is used
to generate a prior ensemble estimate of the state vector: y�.
Here we define the state vector as the hourly snow depth
and 3–layer grain size over the 8–day period (i.e. 768
unknown states) and the ensemble is a low-dimensional
approximation to the joint probability distribution function
of the states across time. The ensemble represents uncer-
tainty in the snow depth due to the uncertain precipitation
inputs, and represents uncertainty in grain size due to the
uncertain prognosticmodel. FollowingDurand andMargulis
[2007], uncertainties in the energy balance forcing data and
forecasting may be neglected during the accumulation sea-
son. An ensemble size of 50 is used in these experiments, as
that was found to be adequate in our previous work [e.g.,
Durand and Margulis, 2007]. The prior estimate can be
conditioned on the set of radiance (36.5 and 18.7 GHz)
measurements taken during the IOP-3 study period. The
conditional (posterior) estimate (y+) is obtained via a standard
linear Kalman-type update:

yþ ¼ y� þ K zobs � zpred
� �

ð5Þ

where zpred is the vector of predicted measurements (via the
RTM, equation (4)), zobs is the measurement vector which
contains 38 measurements, perturbed according to Burgers
et al. [1998], and the Kalman gain (K) is determined from
sample statistics diagnosed from the ensemble [e.g., Durand
andMargulis, 2007]. For the smoother application used here,
the update is applied once as a post-processing step. This
reanalysis approach is preferable for this study where the
primary aim is to assess the ability of a radiance assimilation
scheme to improve snow depth and grain size estimates (at
the point-scale) from the set of measurements taken over the
CLPX IOP-3 (at the point-scale), not necessarily generate
estimates in real-time. Note that the general batch smoother
methodology applied in this study can also be applied for real
time applications by using a ‘‘smoothing window’’ in a
sequential assimilation scheme [DunneandEntekhabi, 2005].

3. Results and Discussion

[10] For the nominal case described above, the prior and
posterior ensemble estimates and independent ground-truth
observations for snow depth and bottom-layer grain size

L02503 DURAND ET AL.: SNOW RADIANCE ASSIMILATION L02503

2 of 5



evolution over IOP-3 are shown in Figures 1a and 1c. The
prior estimates show a large ensemble spread, which is a
direct reflection of the precipitation and grain size uncer-
tainties in the LSM. The central tendency of the prior (as
indicated by the ensemble mean) shows a significant bias in
both snow depth (�53.3 cm) and grain size (�0.085 mm)
relative to the measured values from the nearby snow pits.
In terms of snow depth, this difference could be due to
variability in the snow between the GBMR-7 measurement
locations and the snowpits or to errors in modeled density
(discussed below), but is most likely due to snowfall under-
catch bias at the meteorological station. The prior precipi-
tation used the meteorological values as the mean of the
ensemble input forcing, which would directly propagate any
errors to the snow depth estimates. This type of input
uncertainty is common in snowfall estimates and generally
leads to negatively biased model predictions [e.g., Pan et al.,
2003].
[11] Through application of the Bayesian update (i.e.,

conditioning of the prior on the GBMR 18.7 and 36.5 GHz
v-pol measurements), the posterior ensemble is obtained as
shown in Figures 1a and 1c. The update direction is

consistent with what we would expect based on the prior
predicted radiance ensemble results, which are shown in
Figure 2, where the assimilation analysis is illustrated
graphically. Note that the sharp ‘‘spikes’’ in modeled
brightness temperature (e.g., on 20 February) shown in
Figures 2a and 2c are due to predicted liquid water in the
snowpack for ensemble members with shallow snow depth.
The prior brightness temperature is shown to overestimate
the measured signal (Figures 2a and 2c), and the (ensemble-
diagnosed) relationship between the radiance measurements
and snow depth shows a negative correlation (Figures 2b
and 2d). Together, these are used in equation (5), where the
update increases the snow depth to make the posterior
radiance predictions consistent with the measurement error
(a similar update is seen in the grain size). The result is a
significant shift in the posterior ensemble such that the
posterior ensemble mean snow depth (grain size) bias is
significantly reduced to �7.3 cm (�0.021 mm). The im-
provement in the ensemble mean estimates at the snowpit
observation times are also shown as scatter plots in Figures
1b and 1d. In addition to the shift in the posterior mean
estimates, the ensemble shows that the uncertainty in the

Figure 1. (a) The snow depth ensemble mean for the prior (dashed line) and posterior (solid line) time series, snow pit
measurements (circles), and snow depth estimated via the Chang algorithm (x-marks) are shown. The prior and posterior
ensemble standard deviation is indicated by the width of the light grey and dark grey bands, respectively. (b) A scatterplot
of the prior (squares), Chang algorithm (x-marks) and posterior (circles) versus snow pit snow depth measurements is
shown. (c) Same as Figure 1a, but for bottom-layer grain size. (d) Same as Figure 1b, but for bottom-layer grain size.

L02503 DURAND ET AL.: SNOW RADIANCE ASSIMILATION L02503

3 of 5



prior estimates (as expressed by ensemble standard devia-
tion) is significantly reduced from 0.36 m to 0.10 m and
0.10 mm to 0.0065 mm in snow depth and bottom-layer
grain size respectively.
[12] The prior estimates are based only on the LSM, with

the posterior benefiting from information from the radiance
observations. Hence, this result clearly shows the ability of
radiance measurements to be useful in characterizing snow-
pack states (in this case snow depth) via a radiance assimi-
lation system. To further assess the utility of the assimilation
system, the snow depth was independently estimated from
Chang et al.’s [1987] original retrieval algorithm (‘‘the
Chang algorithm’’, hereafter). This comparison provides a
useful reference since this version of Chang’s algorithm uses
only the same two microwave frequencies and no additional
information. The retrieved snow depth estimates are shown in
Figures 1a and 1b and contain a bias of�18.3 cm. Note, this
result not only implies that radiance assimilation may be able
to outperform some retrieval algorithms, but should provide
improved results compared to data assimilation of retrieval
products [e.g., Andreadis and Lettenmaier, 2006;Dong et al.,
2007].
[13] Since brightness temperature is sensitive to grain

size [Tedesco and Kim, 2006], it is expected that radiance
assimilation results will be sensitive to uncertainty in the
predicted snow grain size [Durand and Margulis, 2008]. To
explore this sensitivity, the parameter representing the
uncertainty in grain size (c) was varied around the nominal
value of 0.5. The mean snow depth error as a function of c
is shown in Figure 3, which illustrates the expected behavior
of increasing error with increasing grain size uncertainty.
Over the range of coefficient of variation values tested (0.125
to 0.75), the posterior estimate bias ranged from�2.99 cm to
�9.85 cm, which is uniformly better than both the prior and
retrieval estimates. The implication is that radiance assimi-
lation may be preferable to retrieval algorithms, even when
grain size physical models are highly uncertain.

[14] Note that the LSM bias in snow density predictions
from the prior ensemble was 2.6, �34.1, and �18.6 kg m�3

for the bottom, middle and top snow layers, respectively
(not shown). The bias in LSM temperature predictions was
0.69 K, 1.14 K, and 2.2 K for the bottom, middle and top
snow layers, respectively (not shown). We estimate that
LSM density and temperature errors will lead to less than 5 K
error in brightness temperature estimates from the RTM in
equation (4) based on the sensitivity coefficients reported by
Durand et al. [2008]. Thus it was not necessary to calculate
posterior estimates of density and temperature. Note also that
PM measurements are far more sensitive to the bottom layer
grain size than to the grain size of the upper layers at the

Figure 3. The dependence of the posterior snow depth
estimate bias on the grain size coefficient of variation (line
through circles), the prior bias (dashed line) and the Chang
algorithm bias (dash-dot line) are shown. The nominal value
of grain size coefficient of variation was 0.5.

Figure 2. (a) The prior ensemble of modeled brightness temperature radiance timeseries (dotted lines) and GBMR-7
measurements (dots) at 36.5 GHz are shown. (b) The relationship between snow depth and modeled brightness temperature at
36.5 GHz averaged over IOP-3 is shown. (c) Same as Figure 2a, but for 18.7 GHz. (d) Same as Figure 2b, but for 18.7 GHz.
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frequencies used [Durand et al., 2008]. Thus, bottom layer
grain size was more relevant to this study, and only bottom
layer grain size results were discussed, for brevity.

4. Summary and Conclusions

[15] An ensemble batch smoother reanalysis was used to
assimilate ground-based radiance observations into a three-
layer snow scheme within an LSM. The LSM was driven by
meteorological data gathered at the CLPX LSOS study area.
The radiance assimilation estimates were evaluated by
seven in situ CLPX snow pit observations. The modeled
snow depth bias was �53.3 cm prior to the assimilation, and
�7.3 cm after the assimilation. Snow depth estimated by the
Chang algorithm had a bias of �18.3 cm. The sensitivity of
the radiance assimilation scheme to the grain size uncer-
tainty was evaluated; over the range of coefficient of
variation values tested (0.125 to 0.75), the posterior estimate
bias ranges from �2.99 cm to�9.85 cm, which is uniformly
better than both the prior and retrieval estimates. Our results
suggest that assimilation of PM radiance observations into
LSMs shows promise for snowpack characterization, which
is in agreement with Pulliainen [2006].
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